Shell Tellus Oils T

Всесезонные гидравлические масла

Отформатировано: русский (Россия)

Отформатировано: русский

Отформатировано: русский (Россия)

Отформатировано: русский

Отформатировано: русский (Россия)

Shell Tellus T - это гидравлические масла экстра-класса с очень высоким индексом вязкости для гидравлических силовых и контрольных систем, работающих в условиях экстремальных температур.

Область применения

• Гидравлические системы и приводы, работающие в широком интервале температур, либо требующие небольших изменений вязкости при колебаниях температуры.

В некоторых типах гидравлических систем для их эффективной стабильной работы допускаются лишь малые изменения вязкости масел при температурных колебаниях. В таких случаях применение масел Shell Tellus T, обладающих вязкостными характеристиками всесезонных масел является неспоримым преимуществом.

Эксплуатационные свойства

• Малая зависимость вязкости от температуры

Использование эффективного сочетания специально подобранного базового масла и полученной по специальной технологии вязкостной присадки vменьшает зависимость вязкости масел OΤ колебаний обеспечивает температуры И прокачиваемость отличную низких температурах. Эти свойства масел Shell Tellus T делают их особенно пригодными для гидравлических механизмов, работающих в условиях экстремальнх температур.

• Высокая механическая стабильность

Использованная в композиции Shell Tellus Oils T присадка для улучшения индекса вязкости обладает высокой механической стабильностью, что

гарантирует эффективную смазку и длительные сроки службы масел.

Высокие противоизносные свойства

Противоизносные присадки, входящие в композицию Shell Tellus Oils Т, эффективны в парах трения "сталь-сталь" и "сталь-бронза" при всех рабочих режимах, включая высоконагруженные, тяжелые и легкие условия эксплуатации.

• **Хорошая фильтруемость** Минимальная склонность масел Shell

Tellus Oils T блокировать фильтры в присутствии воды, солей кальция и других примесей.

• Окислительная стабильность Масла Shell Tellus Oils Т устойчивы к образованию кислых продуктов и шлама даже при высоких рабочих температурах.

• Защита от коррозии

Эффективные ингибиторы обеспечивают длительную защиту от коррозии как черных, так и цветных металлов.

Деаэрирующие и антипенные свойства

Macлa Shell Tellus T обеспечивают быстрое выделение воздуха без избыточного пенообразования.

Совместимость

Масла Shell Tellus T, имеющие в своем составе цинксодержащую противоизносную присадку, не рекомендуются к применению в гидравлических системах, имеющих детали с серебряным покрытием. В этом случае для смазки следует использовать масла Shell Tellus S

Отформатировано: русский (Россия)

Отформатировано: русский (Россия)

Отформатировано: русский (Россия)

TellusT

Рекомендации

Рекомендации по применению масел в областях, не указанных в данном информационном листке, могут быть получены у представителя компании Шелл.

Охрана здоровья и окружающей среды

При соблюдении правил личной и производственной гигиены, а также правильного использования в рекомендуемых областях применения Shell Tellus T не представляют угрозы для здоровья и экологической опасности.

Более полная информация по данному вопросу содержится в паспорте безопасности Shell.

Типичные физико-химические характеристики

Shell Tellus Oil T	15	22	32	37	46	68	100
Тип масла по ISO 3448	HV	HV	HV	HV	HV	HV	HV
Кинематическая вязкость, мм ² /с							
при -30°C	1272	2212	3257	-	-	-	-
при -20°C	434.5	735.8	1157	1901	2063	3671	7454
при 0°С	98.1	152.6	242.6	318.6	371.7	630	1085.4
при 20°С	32.5	49.95	78.1	91.8	115.3	184.8	275
при 40°С	15.1	22.6	32.8	37.2	47.3	72.35	100.6
при 100°C	3.8	5.28	6.96	7.14	9.37	12.93	15.58
(IP 71)							
Индекс вязкости (IP 226)	153	178	181	158	186	182	165
Плотность при 15°C, кг/л (IP 160)	0.871	0.872	0.872	0.871	0.872	0.877	0.889
Температура вспышки в закрытом	160	176	170	220	210	230	176
тигле, °C (IP 34)							
Температура застывания,°С (IP 15)	-54	-54	-51	-45	-45	-39	-36
Деаэрирующие свойства (0,2%	2	-	-	4	8	8	10
воздуха при 50°C) (IP 313)	_						
Анилиновая точка, °С	90	-	-	98	99	103	107
(IP 2)							
Коррозия меди (3ч, при 100°C)	Класс	-	-	Класс	Класс	Класс	Класс
(IP 154/ASTM-D130)	1			1	1	1	1
Пенообразование		-	-				
Ступень 1							
Тенденция /стабильность, мл, при 24°C	20/ отс.			30/ отс.	30/ отс.	30/ отс.	50/ отс.
Ступень 2							
Тенденция /стабильность, мл, при							
93,5°C	10/ отс.			20/ отс.	40/ otc.	40/ otc.	40/ отс.
Ступень 3							
Тенденция /стабильность, после							
теста при 93,5°C, мл, при 24°C	20/ отс.			30/ отс.	30/ отс.	30/ отс.	50/ отс.
(IP 146/ASTM-D892)							
Число нейтрализации, мг КОН/г	1.0	-	-	1.0	1.0	1.0	1.0 /
(IP 139)	<u> </u>				<u></u>		
Устойчивость к ржавлению при	ржавчины не	-	-	ржавчины не	ржавчины не	ржавчины не	ржавчины не
воздействии соленой водой	не образуется			не образуется	не образуется	не образуется	не образуется
(IP 135B)							/
Водоотделение (40-40-0 при 54°C)	30	-	-	25	25	25	40 //
(ASTM-D1401)							(82°¢)

Значения приведенных физико-химических показателей являются типичными для выпускаемой в настоящее время продукции. В дальнейшем они могут изменяться в соответствии с требованиями спецификаций Shell

Отформатировано: русский (Россия)

Удалено: ¶